The given determinant can be written as,
Δ=∣∣
∣
∣∣xx2x3yy2y3zz2z3∣∣
∣
∣∣+∣∣
∣
∣∣xx2−1yy2−1zz2−1∣∣
∣
∣∣=Δ1+Δ2 (say)
⇒Δ1=xyz∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣
(taking x,y,z common from R1,R2,R3)
and Δ2=(−1)(−1)∣∣
∣
∣∣−1xx2−1yy2−1zz2∣∣
∣
∣∣
(interchanging C2↔C3 and then C1↔C2 )
⇒Δ2=(−1)∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣
(taking −1 common from C1)
⇒Δ=(xyz−1)∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣
Since ∣∣
∣
∣∣1xx21yy21zz2∣∣
∣
∣∣=(x−y)(y−z)(z−x)≠0 for distinct values of x,y,z,
⇒xyz−1=0
So, xyz+4=5