Given : A parallelogram ABCD , in which AC=BD
TO Prove : ABCD is a rectangle .
Proof : In △ABC and △ABD
AB=AB [common]
AC=BD [given]
BC=AD [opp. sides of a parallelogram]
⟹△ABC≅△BAD [ by SSS congruence axiom]
⟹∠ABC=△BAD [corresponding parts of congruent triangles]
Also, ∠ABC+∠BAD=180∘ [co - interior angles]
⟹∠ABC+∠ABC=180∘ [Since, ∠ABC=∠BAD]
⟹2∠ABC=180∘
⟹∠ABC=12×180∘=90∘
Hence, parallelogram ABCD is a rectangle.