The correct option is D 92
Let α,β be the roots of the equation (k−2)x2−(k−4)x−2=0, then
(α−β)2=(α+β)2−4αβ
Now, we know that,
α+β=(k−4)(k−2), αβ=−2k−2
So,
(α−β)2=((k−4)(k−2))2+8k−2⇒9=((k−4)(k−2))2+8k−2[∵|α−β|=3]
⇒9=(k−4)2+8(k−2)(k−2)2⇒9(k−2)2=k2−8k+16+8k−16⇒8k2−36k+36=0⇒2k2−9k+9=0⇒(k−3)(2k−3)=0
∴k=3 or k=32
Hence, the sum of values of k is 92