y=c(x−c)2 …(1)⇒yx−c=c(x−c)
Differentiating equation (1) w.r.t. x,
y′=2c(x−c)
⇒y′2=yx−c⇒(x−c)=2yy′⇒c=x−2yy′
Putting c and (x−c) values in equation (1),
8y2=4xydydx−(dydx)3
⇒k=4
Let L=13limt→0ln⎛⎜⎝1tt∫0(1+k2sin3x)k/xdx⎞⎟⎠
=13lnlimt→0t∫0(1+2sin3x)4/xdxt (00 form)
=13lnlimt→0(1+2sin3t)4/t
(using L' Hospital's rule and Leibnitz’s theorem)
=ln e 13limt→04t(2sin3t)=13limt→02⋅3⋅4⋅sin3t3t=8