If the digits at ten's and hundred's places in (11)2016 are x and y respectively, then the ordered pair (x,y) is equal to:
We can write (11)2016=(10+1)2016
=2016C0102016+......+2016C2014102+2016C201510+2016C2016 .... Using binomial expansion
Since, 103=100 is appearing every term so take 1000 common from all the terms and we get
(11)2016=(10+1)2016
=1000λ+203112000+20160+1, where λ=2016C0102013+2016C1102012+....+2016C2013
=1000λ+203,132,161
The ten's digit is 6, so x=6
Hundred's digit is 1, so y=1
Hence, (x,y)=(6,1)