If the direction cosines of a line are k, k and k,then
(a) k>0 (b)0<k<1
(c) k=1 (d)k=1√3 or −1√3
(d) Since,direction cosines of a line are k,k and k.
∴ l=k,m=k and n=kWe know that, l2+m2+n2=1⇒ (k2)2+(k2)2+(k2)2=1⇒ (k2)2=13 But k2=k∴ k=±1√3
The direction cosines of a line are k, k, k, then (a) k > 0 (b) 0 < k < 1 (c) k = 1 (d) k=13 or -13