If the direction ratios of two lines are given by 3lm−4ln+mn=0 and l+2m+3n=0, then the angle between the lines is
Given 3lm−4ln+mn=0 ...(1)
and l+2m+3n=0 ....(2)
From equation (2), l=−(2m+3n), putting in equation (1), we get
−3(2m+3n)m+4(2m+3n)n+mn=0⇒−6m2+12n2=0⇒m=±√2n
Now, m=±√2n⇒l=−(2√2n+3n)=−(2√2+3)n
∴l:m:n=−(3+2√2)n:√2n:n=−(3+2√2):−√2:1
Also, m=−√2n⇒l=−(−2√2+3)n
∴l:m:n=−(3−2√2)n:−√2n:n=−(3−2√2):−√2:1
⇒cosθ=(3+2√2)(3−2√2)+(√2)(−√2)+1.1√(3+2√2)2+(√2)2+12√(3−2√2)2+(−√2)2+12
⇒θ=π2