The correct option is A π2
l+2m+3n=0⇒l=−2m−3n
On substituting l value in 3lm−4ln+nm=0,
3m(−2m−3n)−4n(−2m−3n)+mn=0
⇒12n2=6m2⇒m=±√2n
⇒l=2√2n−3n or l=−2√2n−3n
Hence, d.r.'s of the lines are
(−2√2−3,√2,1) and (2√2−3,−√2,1)
∴a1a2+b1b2+c1c2=0
We know, angle between two intersecting lines is given bycosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
Here cosθ=0
Hence, required angle =π2