The correct option is C π2
l+m+n=0
lm+mn−2nl=0
lm−2nl+mn=0
l(m−2n)+mn=0
−(m+n)(m−2n)+mn=0
(m+n)(2n−m)+mn=0
2nm−m2+2n2−mn+mn=0
2n2+2nm−m2=0
m2−2nm−2n2=0
By applying quadratic formula we get
m=2n±√4n2+8n22
m=(1+√3)n and m=(1−√3)n
Hence corresponding l values will be
l=−(2+√3)n and l=−(2−√3)n
Taking ratios, we get the direction ratios for line one and two respectively as.
((1+√3),1,−(2+√3)) and ((1−√3),1,−(2−√3))
Taking dot product we get
(1+√3)(1−√3)+1+(2+√3)(2−√3)
=1−3+1+4−3
=6−6=0
Hence the angle between them is π2