If the distance between the foci of an ellipse is equal to the length of the latus-rectum, write the eccentricity of ellipse.
Open in App
Solution
Let the equation of ellipse be x2a2=1, where a>b According to equation ⇒2ae=2b2a ⇒a2=b2 ⇒e=b2a2 Now, b2=a2(1−e2) ⇒b2a2=(1−e2) ⇒e=1−e2 ⇒e2+e−1=0 ⇒e=−(−1)±√(1)2−4×1×(−1)2×1 ⇒e=−1±√1+41 ⇒e=−1±√52 ⇒e=√5−12[∵e≠√5−12] ⇒e=√5−12