If the distance of a point A(1,2) is 13 units from a point B(a,14), then the value of a is
a=6 or a=−4
Given that AB=13 units, where the coordinates of A and B are (1,2) and (a,14) respectively.
Applying distance formula,
13=√(a−1)2+(14−2)2
⟹13=√a2−2a+1+144
⟹13=√a2−2a+145
Squaring both the sides,
169=a2−2a+145
⟹a2−2a−24=0
⟹a2−6a+4a−24=0
⟹a(a−6)+4(a−6)=0
⟹(a−6)(a+4)=0
⟹a=6 or a=−4