If the distance of the point P(1,–2,1) from the plane x+2y–2z=α, where α>0, is 5, then the foot of the perpendicular from P to the plane is
(83,43,−73)
Distance of the point P(1,−2,1) from the plane x+2y−2z=α is 5, then
∣∣1−4−2−α3∣∣=5
⇒|−5−α|=15⇒α=10
Let the foot of the perpendicular be M, then
x−11=y+22=z−1−2=λ
∴M≡(λ+1, 2λ−2, 1−2λ) lies on the plane
⇒λ+1+2(2λ−2)−2(1−2λ)−10=0
⇒λ+1+4λ−4−2+4λ−10=0
⇒9λ=15
⇒λ=53⇒M(83,43,−73)