The correct option is D (π,3π2)
f(x)=loge(log|cosx|(x2−7x+26)−4log2|cosx|)
For domain of f,
|cosx|≠0,1⇒x∈R−{nπ2}
Now,f(x)=loge(log|cosx|(x2−7x+26)−4log|cosx|2)
⇒f(x)=loge(log|cosx|(x2−7x+2616))
So, x2−7x+2616>0
⇒x2−7x+26>0Δ=49−4×24<0
∴x2−7x+26>0 which is true for all real values of x.
Also, log|cosx|(x2−7x+2616)>0
As the base of the log function is less than 1, the inequality sign reverses.
⇒x2−7x+2616<1
⇒x2−7x+10<0⇒(x−2)(x−5)<0⇒x∈(2,5)
But x≠π,3π2
Hence, the domain of f is A=(2,π)∪(π,3π2)∪(3π2,5)