If the eccentricities of the hyperbolas x2a2−y2b2=1 and y2b2−x2a2=1 be e and e1, then 1e2+1e21=
1
2
3
None of these
e=√1+b2a2 ⇒e2=a2+b2a2 e1=√1+a2b2 ⇒e21=b2+a2b2 ⇒1e21+1e2=1
If e1 and e2 are the eccentricity of hyperbola x2a2−y2b2=1 and y2a2−x2b2=1 , then point 1e1,1e2 lies on the circle.