If the end points of one axis of an ellipse are (−12,4) and (14,4) and eccentricity 1213, then the equation(s) of the ellipse is/are
A
(x−1)225+(y−4)2169=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(x−1)2169+(y−4)225=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(x−1)2+25(y−4)2169=169
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(x−1)2+(y−4)2169=169
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B(x−1)2169+(y−4)225=1 C(x−1)2+25(y−4)2169=169 Centre is midpoint of vertices C≡(1,4) Now let the equation of the ellipse (x−1)2a2+(y−4)2b2=1 Now putting the coordiantes of any vertex, we get 132a2+0=1⇒a2=169 Now Case 1:a>b Given e=1213 ⇒e2=1−b2a2⇒b2=25∴ellipse will be (x−1)2169+(y−4)225=1
Case 2:b>a Given e=1213 ⇒e2=1−a2b2⇒b2=(1695)2∴ellipse will be (x−1)2+25(y−4)2169=169