We have,
2x2−kx+x+8=0
⇒2x2−(k−1)x+8=0
On comparing with general form of Quadratic Equation ax2+bx+c=0
We get a=2, b=−(k−1), c=8
As roots are real and equal, so D=0
⇒ b2−4ac=0
⇒ (−(k−1))2−4×2×8=0
⇒ k2−2k+1−64=0
⇒ k2−2k−63=0
⇒ k2−9k+7k−63=0
⇒ k(k−9)+7(k−9)=0
⇒ (k−9)(k+7)=0
⇒ k−9=0 or k+7=0
⇒ k=9 or k=−7