If the equation 4sin(x+π3)cos(x−π6)=a2+√3sin2x−cos2x has a solution, then the value of a can be
A
−3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C2 4sin(x+π3)cos(x−π6)=a2+√3sin2x−cos2x ⇒4(sinx2+√3cosx2)(√32cosx+12sinx)=a2+√3sin2x−cos2x⇒(sinx+√3cosx)2=a2+√3sin2x−cos2x⇒3cos2x+sin2x+√3sin2x=a2+√3sin2x−cos2x⇒2cos2x+1=a2−cos2x⇒cos2x+1+1=a2−cos2x⇒cos2x=a2−22
Since cos2x∈[−1,1] ∴−1≤a2−22≤1 ⇒0≤a2≤4⇒−2≤a≤2