The correct option is A λ∈(0,2)−{1}
Given equation of ellipse is
(x−15)2+(y−25)2=(λ−1)2[3x+4y−1√32+42]2
⇒√(x−15)2+(y−25)2=|(λ−1)||3x+4y−1|√32+42
It represents an ellipse with focus at (15,25) and directrix as 3x+4y−1, then eccentricity lies in (0,1)
⇒0<|λ−1|<1⇒−1<λ−1<1∴λ∈(0,2)−{1}