ax2+2hxy+by2+2gx+2fy+c=0
using the concept of family of lines , the other two lines will be
ax2+2hxy+by2+2gx+2fy+c+λxy=0.......(i)
For this to represent straight lines
Δ=0abc+2fgh−af2−bg2−ch2=0ab+2fg2h+λ2−af2−bg2−c(2h+λ2)2=0(abc+2fgh−af2−bg2−ch2)+λfg−cλ24−chλ=00+λfg−cλ24−chλ=0cλ24−λfg+chλ=0λ(cλ4+fg−ch)=0λ=0,4(fg−ch)cλ=4fgc−4h
Substituting in (i)
ax2+2hxy+by2+2gx+2fy+c+(4fgc−4h)xy=0⇒ax2−2hxy+by2+2gx+2fy+c+4fgcxy=0
Hence proved.