ax2+2hxy+by2+2gx+2fy+c=0
Let the lines represented by the given equation be
lx+my+n=0.......(i)l′x+m′y+n′=0........(ii)ax2+2hxy+by2+2gx+2fy+c=(lx+my+n)(l′x+m′y+n′)
Equating the coefficients we get,
ll′=a,mm′=b,nn′=cmn′+m′n=2f,nl′+n′l=2g,lm′+ml′=2h
Solving (i) and (ii) by cross multipplication
xmn′−m′n=ynl′−n′l=1ml′−lm′
So point of intersection P is (mn′−m′nml′−lm′,nl′−n′lml′−lm′)
Square of distance from origin =(mn′−m′nml′−lm′)2+(nl′−n′lml′−lm′)2
=(mn′−m′n)2+(nl′−n′l)2(ml′−lm′)2=(mn′+m′n)2−4mm′nn′+(nl′+n′l)2−4nn′ll′(ml′+lm′)2−4mm′ll′=4f2−4bc+4g2−4ac4h2−4ab=c(a+b)−f2−g2ab−h2
Hence proved.