The correct option is C [−3,−2]
Given−sin4x−(k+2)sin2x−(k+3)=0.Tofindout−theinterval,inwhichkislyingSolution−sin4x−(k+2)sin2x−(k+3)=0⟹sin4x−(k+3)sin2x+sinx−(k+3)=0⟹{sin2x−(k+3)}(sin2x+1)=0∴sin2x=(k+3).Nowthevalueofsin2xliebetween0&1.Sok+3=0⟹k=−3andk+3=1⟹k=−2.∴Theinterval,inwhichkislying,is[−3,−2].Ans−OptionD.