(3−log12√4(x−2))2−4∣∣3−log12√4(x−2)∣∣+3=0
For the log to be defined,
x>2
Assuming 3−log12√4(x−2)=t, we get
t2−4|t|+3=0⇒(|t|)2−4|t|+3=0⇒(|t|−1)(|t|−3)=0⇒|t|=1,3
Now,
|3−log12√4(x−2)|=1⇒3−log12√4(x−2)=±1⇒−log12√4(x−2)=−3±1⇒log12√4(x−2)=2,4⇒x−2=(12√4)2,(12√4)4⇒x=2+21/3,2+22/3
Which are not integers.
Also,
|3−log12√4(x−2)|=3⇒3−log12√4(x−2)=±3
⇒log12√4(x−2)=0,6⇒x−2=(12√4)0,(12√4)6⇒x−2=1,2⇒x=3,4
Hence, |α+β|=7