If the equation |z−a|+|z−b|=3 represents an ellipse, and a,b∈C, where a is fixed, then find the locus of b.
A
|b−a|>3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
|b−a|<3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
|b−2a|>3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|b−2a|<3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D|b−a|<3 Let z=x+iy |z−a|+|z−b|=3 √(x−a)2+y2+√(x−b)2+y2=3 √(x−a)2+y2=3−√(x−b)2+y2 (x−a)2+y2=9+(x−b)2+y2−6√(x−b)2+y2 6√(x−b)2+y2=9+(x−b)2−(x−a)2 6√(x−b)2+y2=9+(a−b)(2x−(a+b)) 6√(x−b)2+y2=(9+a2−b2)+2(a−b)x 36y2+36(x−b)2=4(a−b)2x2+18(a−b)(9+a2−b2)x+λ Therefore coefficient of x2 will be 36−4(a−b)2. Now for the above equation to represent an ellipse 36−4(a−b)62>0 4(a−b)2<36 (a−b)2<9 |a−b|<3