If the equation of the locus of a point equidistant from the points (a1,b1)and(a2,b2)is(a1−a2)x+(b1−b2)y+c=0 then the value of c is
A
12(a22+b22−a21−b21)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a21+a22+b21−b22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12(a21+a22−b21−b22)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√a21+b22−a22−b22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A12(a22+b22−a21−b21) Assume the general point as P(h,k), then the locus is (h−a1)2+(k−b1)2=(h−a2)2+(k−b2)2⇒(a1−a2)h+(b1−b2)k+12(a22+b22−a21−b21)=0Comparing it with given locus,⇒c=12(a22+b22−a21−b21)