Given, c=1cosθ+1sinθ
=sinθ+cosθcosθ.sinθ
=√2sin(θ+450)sin2θ2
=2√2sin(θ+450)sin2θ
Hence
c=2√2sin(θ+450)sin2θ
Now consider
y=sin(θ+450)sin2θ
y′=cos(θ+450)sin2θ−2sin(θ+450).cos2θsin22θ=0
tan(450+θ)=12tan(2θ)
1+tanθ1−tanθ=tanθ1−tan2θ
(1+tanθ)(1−tan2θ)=tanθ(1−tanθ)
(1−tanθ)((1+tanθ)2−tanθ)=0
(1−tanθ)(1+tanθ+tan2θ)=0
Now, 1+tanθ+tan2θ≠0
Hence
1−tanθ=0
tanθ=1
θ=450,2250
Hence f(θ) attains a maximum value at θ=450
Hence
c≤2√2
c2≤8.