Clearly, for c=0, we get two solutions in (0,2π) i.e., x=3π4 and x=7π4
secθ+cosec θ=c, c≠0
⇒√1+tan2θ+√1+cot2θ=c
⇒√1+λ2+√1+1λ2=c, where λ=tanθ
⇒√1+λ2(1+λλ)=c
⇒(1+λ)2+2λ(1+λ2)+λ2=(c2+1)λ2
⇒(λ2+λ+1)2=(c2+1)λ2
⇒λ2+λ+1+λ√c2+1=0 ⋯(1)
or λ2+λ+1−λ√c2+1=0 ⋯(2)
Discriminant of eqn. (1) is
D1=(1+√c2+1)2−4
=(1+√c2+1+2)(1+√c2+1−2)
=(3+√c2+1)(√c2+1−1)>0
Discriminant of eqn. (2) is
D2=(1−√c2+1)2−4
D1>0⇒ eqn. (1) always has two real roots.
So, for secθ+cosec θ=c to have only two real solutions,
D2<0
⇒(1−√c2+1−2)(1−√c2+1+2)<0
⇒(−√c2+1−1)(3−√c2+1)<0
⇒3−√c2+1>0
⇒c2+1<9
⇒c2<8
∴0≤c2<8