If the equation x2+2(k+2)x+9k=0 has equal real roots, then value(s) of k are __________.
For, x2+2(k+2)x+9k=0,
a = 1, b = 2(k +2) and c = 9k.
D=b2−4ac=[2(k+2)]2–4(1)(9k)=4(k+2)2–4(9k)=4(k2+4+4k−9k)=4(k2+4−5k)
The roots of quadratic equation are real and equal only when D=0.
⇒4(k2+4−5k)=0
⇒k2−5k+4=0
On comparing with
ax2+bx+c=0, we get
a= 1, b = -5 and c = 4 and x = k
By quadratic formula,
k=−b±√b2−4ac2a
k=−(−5)±√(−5)2−4(1)(4)2×1
k=5±√25−162
k=5±√92
k=5±32
k=5+32 or k=5−32
k=82 or k=22
k=4 or k=1