The correct option is D both real
Let α and β be the roots of x2+ax+b=0.
⇒α4 and β4 be the roots of x2−cx+d=0.
α+β=−a, αβ=b and α4+β4=c, (αβ)4=d
⇒b4=d
α4+β4=c
⇒(α2+β2)2−2(αβ)2=c
⇒((α+β)2−2αβ)2−2(αβ)2=c
⇒((a)2−2b)2−2(b)2=c
⇒(a2−2b)2−2b2=c⇒2b2+c=(a2−2b)2 ...(1)⇒2b2+c=a4+4b2−4a2b⇒2b2−c=a2(4b−a2) ...(2)
Now, for equation
x2−4bx+2b2−c=0
D=(4b)2–4⋅1⋅(2b2–c)
=4(2b2+c)
=4(a2–2b)2 [from eqn(1)]
⇒D>0
Hence, roots are real.
Now, we have f(x)=x2−4bx+2b2−c f(0)=2b2−c
From eqn(2),
2b2−c=a2(4b−a2)<0 (∵a2>4b)
⇒ Roots are opposite in sign.