f α & β are the roots of
$px2+qx+r=0$
then
$αβ=−qp$
αβ=rp
_______________________________
x2+ax+b=0−−−(1)
x2+cx+d=0−−−(2)
let the common root be α
for eqn(1)
α+α=−a
⇒α=−a2
& α2=b
for the eqn(2) let the second root be β
then
α+β=−c
αβ=d
⇒β=dα
∴α+dα=−c
α2+d=α(−c)
b+d=(−a2)(−c)
∴2(b+d)=ac as reqd.