If the equation xn−1=0,n>1,n∈N, has roots 1,a1,a2,…,an−1, then
A
(1−a1)(1−a2)⋯(1−an−1)=n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
n−1∑r=112−ar=2n−1(n−2)+12n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
n−1∑r=112−ar=2n−1(n−1)−12n−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n−1∑r=111−ar=n−12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dn−1∑r=111−ar=n−12 Since, 1,a1,a2,…,an−1 are roots of xn−1=0, then xn−1=(x−1)(x−a1)(x−a2)⋯(x−an−1)⋯(1) ⇒xn−1x−1=(x−a1)(x−a2)⋯(x−an−1) ⇒limx→1xn−1x−1=limx→1[(x−a1)(x−a2)⋯(x−an−1)] ⇒(1−a1)(1−a2)⋯(1−an−1)=n
From equation (1), log(xn−1)=log(x−1)+log(x−a1)+⋯+log(x−an−1)
Differentiating w.r.t. x, we get nxn−1xn−1=1x−1+1x−a1+1x−a2+⋯+1x−an−1⋯(2)
Putting x=2 in (2), we get n2n−12n−1=1+12−a1+12−a2+⋯+12−an−1 ⇒12−a1+12−a2+...+12−an−1=n2n−12n−1−1 =n2n−1−2n+12n−1 =2n−1(n−2)+12n−1
From equation (2) nxn−1xn−1−1x−1=1x−a1+1x−a2+⋯+1x−an−1 ⇒nxn−1−1(1+x+x2+⋯+xn−1)xn−1=1x−a1+1x−a2+⋯+1x−an−1 ⇒limx→1nxn−1−1(1+x+x2+⋯+xn−1)xn−1=limx→1(1x−a1+1x−a2+⋯+1x−an−1) ⇒limx→1n(n−1)xn−2−(1+2x+⋯+(n−1)xn−2)nxn−1=11−a1+11−a2+⋯+11−an−1 ⇒n(n−1)−(1+2+⋯+(n−1))n=11−a1+11−a2+⋯+11−an−1 ⇒11−a1+11−a2+⋯+11−an−1=n−12