The correct option is A p=12,q=1
Given equation is
12x2+7xy−py2−18x+qy+6=0
On comparing with
ax2+by2+2hxy+2gx+2fy+c=0, we get
a=12,b=−p,h=72,g=−9,f=q2,c=6
Conditions for pair of lines and pair of perpendiculars are
abc+2fgh−af2−bg2−ch2=0 and a+b=0
⇒12×(−p)(6)+2×(q2)(−9)(72)−12(q2)2−(−p)(−9)2−6(72)2=0
and 12−p=0
⇒−72p−632q−3q2+81p−1472=0
and 12−p=0
⇒2q2+21q−23=0 and p=12
⇒q=1 and p=12.