Here radius of the circle =4
Equations of two diameters of the circle are
2x+3y=2 ....(1)
x−2y=3 ....(2)
Solving (1) and (2) we get
(2)⇒x=3+2y
Substituting x=3+2y in (1) we get
⇒2(3+2y)+3y=2
⇒6+4y+3y=2
⇒7y=2−6=−4
⇒y=−47
substitute y=−47 in x=3+2y=3+2×−47=21−87=137
Hence centre of the circle is (137,−47)
Now the equation of the required circle is
(x+137)2+(y−47)2=42
⇒(7x+13)2+(7y−4)2=16×49
⇒49x2+169+182x+49y2+16−56y−784=0
⇒49x2+49y2+182x−56y+169+16−784=0
⇒49x2+49y2+182x−56y−599=0