The correct option is
B 3We have x2+ax+12=0 .......(1)
x2+bx+15=0 .......(2)
x2+(a+b)x+36=0 .......(3)
Let the common root be m
So,m will satisfy all three equations
m2+am+12=0 .......(4)
m2+bm+15=0 .......(5)
m2+(a+b)m+36=0 .......(6)
Adding (5) and (6), we get
2m2+(a+b)m+27=0 .......(7)
Subtrating (6) from (7) we get
m2−9=0
⇒m=3 or m=−3(which is not possible)
Put m=3 in eqn(4)
9+3a+12=0
⇒3a+21=0
⇒3a=−21
⇒a=−213=−7
∴a=−7
Put m=3 in eqn(5) we get
9+3b+15=0
⇒3b=−24
⇒b=−243=−8
∴a=−7,b=−8
Substituting a=−7,b=−8 in (1) we get
x2−7x+12=x2−4x−3x+12=x(x−4)−3(x−4)=(x−3)(x−4)=0
Roots are 3 and 4
Substituting a=−7,b=−8 in (2) we get
x2−8x+15=x2−5x−3x+15=x(x−5)−3(x−5)=(x−3)(x−5)=0
Roots are 3 and 5
Substituting a=−7,b=−8 in (3) we get
x2+(−7−8)x+36=x2−12x−3x+36=x(x−12)−3(x−12)=(x−12)(x−3)=0
Roots are 12 and 3
∴{3,4}∩{3,5}∩{3,12}={3}
∴ the possible common root is {3}