The correct option is D 2
Here a≠b,
∵ For a=b two equations become identical, so they have two roots in common.
Let α be the common root of the given equations. Then,
α2+b2=1−2bα⋯(1)α2+a2=1−2aα⋯(2)
Using equation (1) and (2),
b2−a2=2(a−b)α⇒α=−(a+b)2
Putting the value in equation (1),
(a+b)24+b2=1+2b×a+b2⇒(a+b)2+4b2=4+4b2+4ab⇒(a+b)2−4ab=4⇒(a−b)2=4∴|a−b|=2