If the equations x2−x−12=0 and kx2+10x+3=0 may have one common root, then k is:
3 or −4316
Let α be a common roots, then
α2−α−12−0,kα2+10α+3=0 .
α2117=α−12k−3=110+k
⇒ (12k+3)2=117(10+k)
⇒144k2+9+72k=1170+117k
⇒144k2−45k−1161=0
⇒16k2−5k−129=0
⇒(k−3)(16k+43)=0
⇒k=3 or −4316