If the expansion in powers of x of the function 1/[(1−ax)(1−bx)] is a0+a1x+a2x2+a3x2+..., then an is?
1(1−ax)(1−bx)⇒(1−ax)−1(1−bx)−1Bybinomialexpansion⇒[1+ax+1×2a2x22!+1×2×3a3x33!+............n!anxnn!]×⇒[1+bx+1×2b2x22!+1×2×3b3x33!+............n!bnxnn!]⇒(1+ax+a2x2+a3x3+........anxn)(1+bx+b2x2+b3x3+........bnxn)⇒1+(a+b)x+(a2+b2)x2+(a3+b3)x3+...........(an+bn)xn∴an=(an+bn)xnAns.