If the expansion of 1(1−ax)(1−bx)=a0+a1x+a2x2+⋯+anxn+⋯, then an is (where a≠b,|ax|,|bx|<1)
A
an+1−bn+1b−a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
an−bnb−a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
bn−anb−a
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
bn+1−an+1b−a
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dbn+1−an+1b−a 1(1−ax)(1−bx)=a0+a1x+a2x2+.....+anxn+....
but (1−ax)−1(1−bx)−1=(1+ax+a2x2+⋯)(1+bx+b2x2+⋯) ⇒ comparing the coefficient of xn in above equations bn+abn−1+a2bn−2+....+an−1b+an=an ∴an=bn+1−an+1b−a