If the expansion of powers of x of the function 1(1−ax)(1−bx) is a0+a1x+a2x2+a3x3+⋯, then an is?
bn−anb−a
an−bnb−a
an+1−bn+1b−a
bn+1−an+1b−a
(1−ax)−1(1−bx)−1=(1+ax+a2x2+⋯)(1+bx+b2x2+⋯) therefore, the coefficient of xn is bn+abn−1+a2bn−2+⋯an−1b+an=bn+1−an+1b−a∴an=bn+1−an+1b−a