If the figure, AB is parallel to DC, ∠BCE=80o and ∠BAC=25o. Then (i) ∠CAD (ii) ∠CBD (iii) ∠ADC are respectively
A
(i) ∠CAD=100o (ii) ∠CBD=45o (iii) ∠ADC=65o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(i) ∠CAD=65o (ii) ∠CBD=45o (iii) ∠ADC=55o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(i) ∠CAD=45o (ii) ∠CBD=65o (iii) ∠ADC=90o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(i) ∠CAD=55o (ii) ∠CBD=55o (iii) ∠ADC=100o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D (i) ∠CAD=55o (ii) ∠CBD=55o (iii) ∠ADC=100o Given−ABCDisacyclicquadrilateral.AC&BDarediagonals.∠BAC=25oand∠BCE=80o.Tofindout−(i)∠CAD=?(iI)∠CBD=?(i)∠ADC=?Solution−∠BCE+∠BCD=180o(linearpair)⟹∠BCD=180o−∠BCE=180o−80o=100o(i)AlsoAB∥CDi.e∠CAB=∠ACD=25o.(alternativeangles).........(ii)∴∠ACB=∠BCD−∠ACD=100o−25o=75o.SincethechordABsubtends∠ACB&∠ADBtothecircumferenceofthegivencircleatC&Drespectively,weget∠ACB=∠ADB=75o(∵Theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).AgainBCsubtends∠CAB&∠CDBtothecircumferenceofthegivencircleatA&Drespectively,weget∠CAB=∠CDB=25o(∵theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).∴∠ADC=∠ADB+∠CDB=75o+25o=100o.....(ansiii).NowABCDisacyclicquadrilateral.∴∠BCD+∠BAD=180o⟹∠BAD=180o−∠BCD=180o−100o=80o(fromeqn.i)⟹∠BAC+∠CAD=80o⟹∠CAD=80o−∠BAC=80o−25o=55o(ansi).AgainDCsubtends∠CAD&∠CBDtothecircumferenceofthegivencircleatA&Brespectively,weget∠CAD=∠CBD=55o(∵theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).∴∠ADC=∠ADB+∠CDB=75o+25o=100o.....(ansii).So(i)∠CAD=55o,(ii)∠CBD=55o,(iii)∠ADC=100o.AnsOptionD.