wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the figure, AB is parallel to DC, BCE=80o and BAC=25o. Then (i) CAD (ii) CBD (iii) ADC
are respectively
243786_440ebce40ddc46d198ef6e91e6d8f93f.png

A
(i) CAD=100o
(ii) CBD=45o
(iii) ADC=65o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(i) CAD=65o
(ii) CBD=45o
(iii) ADC=55o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(i) CAD=45o
(ii) CBD=65o
(iii) ADC=90o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(i) CAD=55o
(ii) CBD=55o
(iii) ADC=100o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D (i) CAD=55o
(ii) CBD=55o
(iii) ADC=100o
GivenABCDisacyclicquadrilateral.AC&BDarediagonals.BAC=25oandBCE=80o.Tofindout(i)CAD=?(iI)CBD=?(i)ADC=?SolutionBCE+BCD=180o(linearpair)BCD=180oBCE=180o80o=100o(i)AlsoABCDi.eCAB=ACD=25o.(alternativeangles).........(ii)ACB=BCDACD=100o25o=75o.SincethechordABsubtendsACB&ADBtothecircumferenceofthegivencircleatC&Drespectively,wegetACB=ADB=75o(Theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).AgainBCsubtendsCAB&CDBtothecircumferenceofthegivencircleatA&Drespectively,wegetCAB=CDB=25o(theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).ADC=ADB+CDB=75o+25o=100o.....(ansiii).NowABCDisacyclicquadrilateral.BCD+BAD=180oBAD=180oBCD=180o100o=80o(fromeqn.i)BAC+CAD=80oCAD=80oBAC=80o25o=55o(ansi).AgainDCsubtendsCAD&CBDtothecircumferenceofthegivencircleatA&Brespectively,wegetCAD=CBD=55o(theangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal).ADC=ADB+CDB=75o+25o=100o.....(ansii).So(i)CAD=55o,(ii)CBD=55o,(iii)ADC=100o.AnsOptionD.
323185_243786_ans_2d386d00ddca42348ee07406784a8057.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Properties of a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon