The correct options are
C a≥b≥c
D ac=b2
let x be the first term and y the (2n−1)th of A.P., G.P., and H.P. whose nth terms are a,b,c respectively.
For A.P; y=x+(2n−2)d
⇒d=(y−x)2(n−1)
Therefore, a=x+(n−1)d
⇒a=12(x+y)
For G.P; y=xr2n−2
⇒r=(yx)12n−2
Therefore, b=xrn−1
⇒b=√xy
For H.P; 1y=1x+(2n−2)d1
⇒1y−1x=(2n−2)d1
⇒(x−y)xy=(2n−2)d1
⇒d1=(x−y)2xy(n−1)
Therefore, ⇒1c=1x+(n−1)d1
⇒1c=(x+y)2xy
⇒c=2xy(x+y)
Now, a−b=12(x+y)−√xy
=12(√x−√y)2≥0
⇒a≥b
Consider, ac=12(x+y)2xy(x+y)
⇒ac=xy
⇒ac=b2 ∵b=√xy
⇒bc=ab≥1 ∵a≥b
⇒b≥c
Hence, a≥b≥c