The correct options are
B a≥b≥c
D ac−b2=0
Let x be the 1st term and y be the (2n−1)th term of A.P, G.P and H.P. whose nth terms are a, b and c respectively.
For A.P, y=x+(2n−2)d
⇒d=(y−x)2(n−1)
∴a=x+(n−1)d=(x+y)2
For G.P, y=xr2n−2⇒r=(yx)12n−2
∴b=xrn−1=√xy
For H.P, 1y=1x+(2n−2)d1
⇒d1=(x−y)2xy(n−1)
∴1c=1x+(n−1)d1=(x+y)2xy
Or c=2xyx+y
Now a−b=12(x+y)−√xy=12(√x−√y)2≥0⇒a≥b
Now ac=b2∴bc=ab≥1⇒b≥c
Hence, a≥b≥c and also ac−b2=0
Thus options (B) and (D) are correct.