If the first , second and last of an A.P are a,b and 2a, respectively, then sum will be
Let the AP series be x, x+d, x+2d…x+(n-1)d, where;
x is the first term of the sequence;
d is the arithmetic difference;
n is the number of terms.
According to the question;
first term=x=a;……(1)
second term=x+d=b;
d=b-a;……………….(2)
last term=x+(n-1)d=2a;
Substituting the value of d from equation 2 in the above equation, we get;
(n-1)(b-a)=a;
n-1=a/(b-a);
n=b/(b-a)…………..(3);
Hence as we know sum of terms of an AP=n/2[2*first term+(n-1)d];
Sum=b/2(b-a)[2a+a/(b-a)(b-a)];
sum=3ab2(b−a)