If the foci of the ellipsex216+y2b2=1and the hyperbola x2144−y281=125coincide,write the value of b2
The given equation of hyperbola is
x2144−y281=125
⇒25x2144−25y281=1
⇒x2144125−y28125=1
⇒x2(125)2−y2(95)2=1
This equation of the hyperbola is of the fromx2a21−y2b21=1,
where a21=14425 and b21=8125
Let,e,be the eccentricity of the hyperbola.Then,
e1=√1+b21a21
=√1+812514425
=√1+81144
=√144+81144
=1512
=54
So,the coordinates of‘foci are (±a1e1,0)i.e.,(±3,0)
It is given that the foci of the elipse coincide with the foci of the hyperbola.So,the coordinates of foci of the hyperbola are(±3,0)
Now,the given equation of ellipse is
x216+y2b2=1
⇒x242+y2b2=1
This equation of the hyperbola is of theformx2a2−y2b2=1
Where a22=16 and b22=b2
Let,e2 be the eccentricity of the given ellipse.So,the coordinates of foci are (±a2e2.0)
∴a2e2=3
⇒4×e2=3 (∵a2=4)
⇒e2=34
⇒e22=916
Now,
b22=a22(1−e22)
=16(1−916)
=16×716
⇒b22=7 (∵b22−b2)
⇒b2=7
Hence,b2=7