The correct option is C 12
Given equation of ellipse, x225+y2b2=1 .... (i)
and equation of hyperbola, x2144−y224=113
⇒x2(14413)−y2(2513)=1
Here, A2=14433 and B2=2513
Eccentricity of hyperbola is,
e2=√A2+B2A2=√16913×13144=1312
Focii of hyperbola is (±Ae2,0)
=(±12√13×1312,0)=(±√13,0)
Given, focii of the ellipse and hyperbola coincide.
i.e., focii of an ellipse (±ae1,0)=(±√13,0)
⇒ae1=√13
⇒5e1=√13
⇒e1=√135
Also, e1=√a2−b2a2
⇒e21a2=a2−b2
⇒b2=a2−e21a2=25−1325×25
⇒b2=12