If the following function f(x) is continuous at x=0, find the values of a,b and c. f(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩sin(a+1)x+sinxx,ifx<0c,ifx=0√x+bx2−√xbx32,ifx>0.
Open in App
Solution
If f(x) is continuous at x=0, then
f(0−)=f(0)=f(0+)
⇒f(0−)=limx→0(a+1)sin(a+1)x(a+1)x+limx→0sinxx
f(0−)=a+2
f(0)=c
f(0+)=limx→0√x(√1+bx−1)bx√x=limx→01+bx2−1bx (on expanding the square root)