wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the following function is continuous at x=π2, then find a and b:
f(x)=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪1sin2x3cos2x,ifx<π2a,ifx=π2b(1sinx)(π2x)2,ifx>π2

Open in App
Solution

f(x)=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪1sin2x3cos2x,ifx<π2a,ifx=π2b(1sinx)(π2x)2,ifx>π2

Since,
limx π2f(x)=limxπ2+f(x)=limxπ2=f(x)

a=limx π21sin2x3cos2x

a=limx π2cos2x3cos2x

a=limx π213

a=13

Similarly,
a=limxπ2+b(1sinx)(π2x)2

Apply L-hospital rule,
a=limxπ2+b(0cosx)2(π2x)(02)

a=limxπ2+bcosx4(π2x)

a=limxπ2+bcosx4(π2x)

Apply L-hospital rule,
a=limxπ2+bsinx4(02)

a=limxπ2+bsinx8

13=bsinπ28

13=b8

b=83

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon