The correct option is C 2
Given : (x+xlog2x)7
Now, we know
7C3x4(xlog2x)3=4480⇒35x4(xlog2x)3=4480⇒x4(xlog2x)3=128⇒x4+3log2x=128
Taking log2, we get
⇒(4+3log2x)log2x=7
Let log2x=y
⇒4y+3y2=7⇒3y2+4y−7=0⇒(y−1)(3y+7)=0⇒y=1,−73⇒log2x=1,−73⇒x=2,x=2−7/3
Hence, from the given options x=2.