The correct option is B 10
⎛⎜
⎜
⎜⎝√x(11+logx)+12√x⎞⎟
⎟
⎟⎠6
=⎛⎜
⎜⎝x12(1+logx)+x112⎞⎟
⎟⎠6
Now, T4=T3+1=6C3x32(1+logx)x14
⇒200=20x32(1+logx)+14
⇒10=x32(1+logx)+14
Taking log on both sides,
⇒1=[32(1+logx)+14]log10x
⇒1logx−14=32(1+logx)
⇒(logx)2+3logx−4=0
⇒(logx+4)(logx−1)=0
⇒log10x=1 (∵logx=−4, not possible )
⇒x=10