The correct option is
C b∈(−7,−1)∪(2,3)since the function
f(x) increases for all
x, therefore,
f′(x)=(1−√21−4b−b2b+1)3x2+5>0,∀x∈R
⇒(1−√21−4b−b2b+1)>0
and, (0)2−4×3(1−√21−4b−b2b+1)5<0
[∵ax2+bx+c>0∀x∈R⇒a>0 and D>0]
⇒1−√21−4b−b2b+1>0
The above inequality holds, when (1) b+1<0 and (2) 21−4b−b2>0
∴b<−1 and b2+4b−21<0
⇒b<−1 and (b+7)(b−3)<0
⇒b<−1 and −7<b<3
∴b∈(−7,−1)
Again, when b+1>0,f(x) will be increasing for all x,
if, 21−4b−b2>0 and 1>√21−4b−b2b+1
or,b2+4b−21<0
and, (b+1)2>(21−4b−b2) [ as b+1>0]
or, (b+7)(b−3)<0 and b2+3b−10>0
⇒(−7<b<3) and (b<−5 or b>2)
⇒2<b<3
From (1) and (2), we have
b∈(−7,−1)∪(2,3)