If the functionf:[1,∞)→[1,∞) is defined byf(x)=2(x(x-1)), then f-1(x) is equal to
12x(x-1)
121-1+4log2x
121+4log2x
121+1+4log2x
Not defined
Explanation for the correct option:
Finding the value of f-1(x):
Given that f(x)=2(x(x-1))
Say y=2(x(x-1))
Applying log2 on both sides, we get,
log2y=log22xx-1=xx-1log22∵logmn=nlogm=xx-1⇒log2y=x2-x⇒x2-x-log2y=0⇒x=1±1-41-log2y2∵∀ax2+bx+c=0;x=-b±b2-4ac2a⇒f-1y=1±1+4log2y2∵fx=y⇒f-1x=1±1+4log2x2⇒f-1x=1+1+4log2x2∵f:[1,∞)→[1,∞)
Hence, the correct option is option(D) i.e. 121+1+4log2x